Deterministic Aperiodic Tile Sets
نویسندگان
چکیده
Wang tiles are square tiles with colored edges. We construct an aperiodic set of Wang tiles that is strongly deterministic in the sense that any two adjacent edges of a tile determine the tile uniquely. Consequently, the tiling group of this set is not hyperbolic and it acts discretely and co-compactly on a CAT(0) space.
منابع مشابه
Filling Curves Constructed in Cellular Automata with Aperiodic Tiling
In many constructions on cellular automata, information is transmitted with signals propagating through a defined background. In this paper, we investigate the possibility of using aperiodic tiling inside zones delimited by signals. More precisely, we study curves delineated by CA-constructible functions and prove that most of them can be filled with the NW-deterministic tile set defined by Kar...
متن کاملAn aperiodic set of 11 Wang tiles
A new aperiodic tile set containing 11 Wang tiles on 4 colors is presented. This tile set is minimal in the sense that no Wang set with less than 11 tiles is aperiodic, and no Wang set with less than 4 colors is aperiodic. Wang tiles are square tiles with colored edges. A tiling of the plane by Wang tiles consists in putting a Wang tile in each cell of the grid Z so that contiguous edges share ...
متن کاملYet Another Aperiodic Tile Set
We present here an elementary construction of an aperiodic tile set. Although there already exist dozens of examples of aperiodic tile sets we believe this construction introduces an approach that is different enough to be interesting and that the whole construction and the proof of aperiodicity are hopefully simpler than most existing techniques. Aperiodic tile sets have been widely studied si...
متن کاملFixed-point tile sets and their applicationsI
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...
متن کاملFixed Point and Aperiodic Tilings
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This constr...
متن کامل